
SC19 BoF: HPC System Testing: Procedures,
Acceptance, Regression Testing, and Automation

KAUST Regression Testing

Bilel Hadri
KAUST Supercomputing Laboratory (KSL)

bilel.hadri@kaust.edu.sa

C
O

M
P

U
TE Node

Processor type:
Intel Haswell

2 CPU sockets per node, 16 processors cores per
CPU,2.3GHz

6174 Nodes 197,568 cores

128 GB of memory per node Over 790 TB total memory

Prg-Env Cray PrgEnv KSL staff installation of 3rd party packages (about 200)

Speed 7.2 Pflop/s speak
theoretical performance

5.53 Pflop/s sustained LINPACK and ranked 7th in July
2015 Top500 list

Network Cray Aries interconnect with
Dragonfly topology

57% of the maximum global bandwidth between the 18
groups of two cabinets.

ST
O

R
E Disk Sonexion 2000 17.6 Petabytes of usable storage. Over 500 GB/s

bandwidth

Burst
Buffer DataWarp Intel Solid Sate Devices (SSD) fast data cache. 1.5

Petabytes of capacity Over 1.5 TB/s bandwidth.

Shaheen2 Supercomputer

Need to deliver the best computing environment to our users !
System performance and software assessments are critical !

REGRESSION TESTING is needed !

• 80 KAUST faculty (Over 50% of KAUST Faculty)
• 14 Saudi Institutions(gvt, industry, academia)
• 999 users. Who will be the 1000th ?

• 440 projects lead by 140PIs
• 4.2 Billion core-hours consumed

Since July 2015, Shaheen is used by as of today by:

Motivations

� On previous HPC systems at KAUST since 2009.
� Acceptance test were run only once with basic tests.
� Simple and basic functionality were checked only before releasing the system back

to the users as soon as possible.
� Issues were resolved after users complaints

� With Shaheen2 installation in April 2015,
� Set detailed acceptance tests with expected functionality and performance

� Identify potential hardware or software issues in a more rational & methodical
way

� Around 100 tests of functionalities and performance

Motivations

� Following Acceptance, a regression procedure has been adopted
� Developed SRT: Shaheen Regression Testing
� Gathered a set of well-defined tests from acceptance tests to systematically assess

the actual state of the system.
� Designed to run after each maintenance session or unscheduled downtime
� Main tests are done manually and occasionally using Jenkins
� Keep adding additional tests on new features or new workload of users

� GOAL: Have Zero ticket/complaints about SW/HW by users following
maintenance.

Objective and Design
� Objectives:

� Provide performance similar or beyond acceptance results.
� Run the tests with no special privileges.
� Analysis of the results by KSL team on whether or not to release the

system to the users, based on the criticality of any issues detected
� Enabling ‘on-the-fly’ performance evaluation and even earlier detection of

potential issues.

� Testing protocol :
� Component Tests:

� Test the regular and basic of functionality of the system including the
scheduler and programming environments

� Synthetic Tests
� Extremely well-localized performance runs: compute nodes,

interconnect, filesystem
� Typical Shaheen2 workload

� Run real applications in short jobs

Component Tests
Category Purpose How to test?

General

Connection Try to login via ssh (do this test with each login node), tunneling…

promptness of
command line

How long for a regular shell command to return?

check X-Windows Does an X11 window open correctly when spawned from Shaheen front-end?

check files Are files accessible in /home, /lustre, /project, /scratch?

Licenses

Cray compiler
Can we compile a toy program with these compilers?

Intel compiler

Commercial software Can we run Totalview, DDT, Ansys ?

Scheduler

Availability Check that all queues are up and running and record the number of nodes down

Nominal use
Submit (1, 4-512, 510-1000, > 1000) -node jobs

Submit from /project, from /scratch

Stress Measure the time needed to submit a job-array of 500 jobs. When running, cancel all of them.

Scheduling
Check policies and QoS, partitions

policies

Accounting Check if the accounting is working

Programming
Environment

Compilers Compile a toy code with Cray, Intel and GNU compiler

Libraries, modules Link toy codes against petsc, perftools, hdf5 and netcdf libraries

Monitoring Check that the previous compilations have been recorded in the xalt database. Check that a
toy program’s IO behavior is tracked in Darshan.

Burst Buffer Availability Submit a job using the burst-buffer and check the queue status and all the functionalities

Performance Tests

Category Purpose How to test?

Synthetic
benchmark

Node performance Short HPL per node wrapped by MPI. Full scale test

Network Test links. Full scale test

IO IOR performance

Burst Buffer Performance IOR performance

Applications Performance and
variability

VASP, WRF, SPECFEM, NEK5000

In average, when no issue detected, SRT last in average 1h30min.

Benefits
In the last 4 years, our acceptance and regression procedure has provided
essential benefits:

1. No hardware or software tickets/complaints related to the system for the next 24 hours after it
is released to users.

2. An improved reproducibility of user experiments since the installation of the systems

3. Better collaboration between CS team, sys-admin and Cray on site team

4. More detailed history of observed hardware and software problems
à Allowing us to provide more accurate data to vendors about any performance degradation

5. With the new functionalities, new users, we add new regression testing and adapt it for
acceptance for new HPC acquisition

6. Compared results with other similar systems and detected issues (Hadri,Parsani CUG 2019
Paper)

7. Many success by detecting HW (faulty CPU, SSD) and SW bugs (SLURM, PrgEnv, Patches …)

What is next ?

� Coordinate the effort with the community

� Make some benchmark test available to the
community

