

BOF Goals

- Share acceptance test procedures
- Learn about tools used successfully for testing
- Compile list of resources, tools, and tests.
- Start a working group

Live Survey

https://tinyurl.com/system-test-bof

Room: SC19HPC

Lightning Talk Presenters

KAUST: Bilel Hadri

NCSA: Brett Bode & Celso Mendes

NERSC: Tina Declerck

OLCF: Verónica G. Melesse Vergara

Thank you!

https://olcf.github.io/system-test-wg/events/sc19bof.html

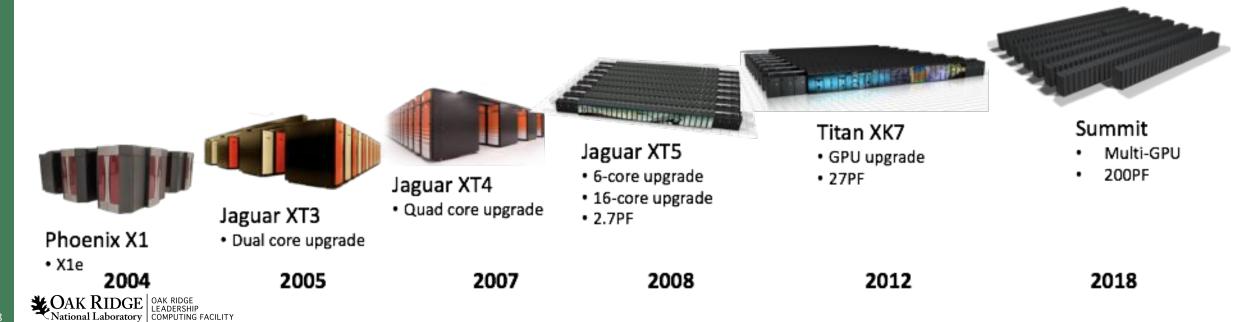
Comment or send PR:

https://github.com/olcf/system-test-wg

OLCF Acceptance Testing

Verónica G. Vergara Larrea

Reuben Budiardja



Outline

- What is the OLCF?
- Summit
- Acceptance Testing
- Post-acceptance Testing

What is the Oak Ridge Leadership Computing Facility?

- Deploy and operate computational and data resources required to tackle global challenges.
- Offer leadership-class computing resources to researchers who have many of the largest computing problems in science.
- Partnering has been essential to delivering science in a rapidly changing computational environment.

Summit

Compute System

- 256 compute racks
- 4,608 compute nodes
- Mellanox EDR IB fabric
- 200 PFLOPS FP64
- ~11 MW, 70F cooling water
- 10.2 PB Total Memory

Compute Rack

- 18 Compute Servers
- Warm water (70°F direct-cooled components)
- RDHX for air-cooled components

39.7 TB Memory/rack 55 KW max power/rack

Compute Node

- 2 x POWER9
- 6 x NVIDIA GV100
- NVMe-compatible PCle 1.6 TB SSD

IBM POWER9

- 22 Cores
- 4 Threads/core
- NVLink

NVIDIA GV100

- 7 TF
- 16 GB @ 0.9 TB/s
- NVLink

25 GB/s EDR IB- (2 ports) 512 GB DRAM- (DDR4) 96 GB HBM- (3D Stacked) Coherent Shared Memory

250 PB storage

2.5 TB/s read, 2.5 TB/s write (**2.5 TB/s sequential and 2.2 TB/s random I/O)

Acceptance Testing

HW

Hardware Acceptance Test: Complete hardware diagnostics.

FT

 Functionality Test: Demonstrate that basic hardware and software functionality meet essential requirements.

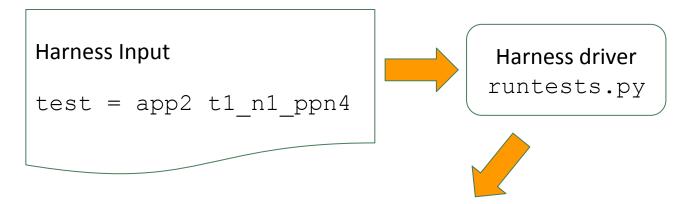
PT

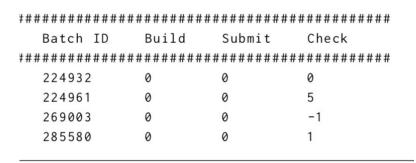
 Performance Test: Demonstrate that the system hardware and software meet performance and scalability requirements of the suite of applications defined in the Agreement.

ST

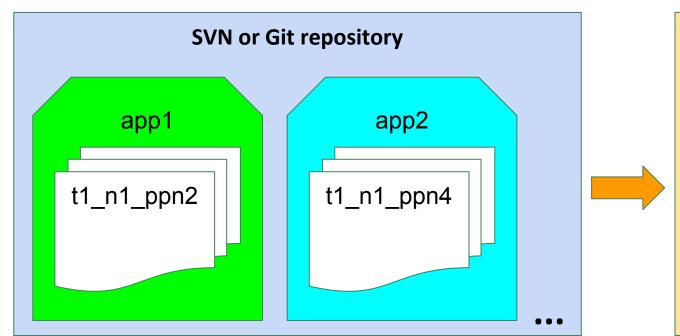
 Stability Test: Demonstrate stability across a mix of simulated code development activity and production simulations.

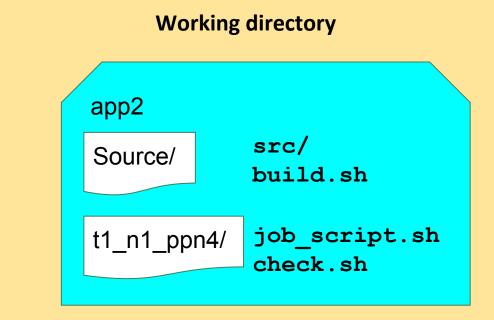
Acceptance Tests


	L	Languages			Compilers				Features / Prog. Models									Libraries											Motifs							Other					I/Q			
Full Applications	FORTRAN	FORTRAN 2003	U	‡	×	TEVINI	PGI	Poterological Inch	oro accelerated	Uses Multiple GPUS	C++11 threads	OpenMP 3.1	Jue	OpenACC	CUDA	Kokkos	MPI	BLAS	LAPACK	ESSL	Magma	cuBLAS.	Scalapack	CUEET	FTW	PETSE	Trilinos	Hypre	집:	Structured gnds	, ,	arse Illical	Parse	Monte Carlo	E	Burst Buffer	SGR	GPUDirect	UVM	GlobalArrays	HDF5	HDF5 parallel	NetCDE	NetCDE parallel ADIOS
CHROMA		Т	х	х	x :	()	K	>	Κ			X	Г		X		X	Х			X	X						ı	,	K	ı	X	3	X				X	X					
NAMD				X				×	K			X					X							X	X				,	K			X		Х									
LAMMPS				X)	K	×	x	X		X			X	X	X						X		X								X		X									
LSMS	x			X)	K	×	x >	X		X			X		X	X				X)	(X							х			
ACME	x	X			X)	x x	X	K			X		X			X												2	K X								X					х	X
GTC	x						Х	X	X	X		X		X			X									X		X	X	K X		X	X											Х
NWCHEM	х		X	X	x	,	k x	· >	K	×		X			X		X	x	X	X		x	X								>	(x				
Profugus				X	2	()	K	×	K						X												х							X										
Additional benchmarks, kernels, and mini-apps											х		X																							X	x					x		



Acceptance Tests (cont'd)


- Benchmarks
 - contractual, feature specific
- Real-world Applications
 - past workloads and expected workloads
- Workflows
- Tools!
 - Profilers (nvprof)
 - Test in single- and multi-host modes on applications
 - Test traces, profiles, analysis metrics for CUDA programs
 - Debuggers (ARM DDT)
 - Ensure it can run at-scale (20% full system) reliable and start within 5 minutes
 - Used in offline (non-interactive) mode
 - Breakpoints set on application, output captured and validated with script


OLCF Test Harness

Post-acceptance Testing

- A shortened version of the acceptance test is prepared to validate new versions of the HPC SW stack.
- Expand tests to include applications from the new allocation cycle.
- Multi-stage testing:
 - Starts at the smaller scale on the test & development system
 - Schedule a 8-12 hour testshot on Summit
- Delicate balance: downtime vs. risk of introducing issues into production
- Automate regression testing:

